高分!请教中考数学!怎么做二次函数压轴大题?

网上有关“高分!请教中考数学!怎么做二次函数压轴大题?”话题很是火热,小编也是针对高分!请教中考数学!怎么做二次函数压轴大题?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

二次函数压轴大题一、二问一般来说求出函数解析式就可以,很简单地送分题.

三问一般像你说的面积、存在、相似、最值、动态问题,

我们老师教的说动点的话把它当做定点,把已知条件带进去看是否符合,符合之后直接根据一二问求出坐标就可以了,动点问题一般有几个点,所以要考虑全面.

最值的话没什么巧的,根据之前的函数解析式配方求出X的取值范围就可以了.

相似的话,和动点一样,你首先要假设它相似,然后看条件是否符合,然后带条件算.

存在的话,个人推荐,实在做不起你看图像的话猜测一向存不存在,起码可以蒙得两分.(实在做不起才蒙啊)一般存在的问题都是连接两点然后证明点在不在这条线的函数解析式上,反正你要根据题意起码找到那个点可能存在的位置,然后合理假设.

面积问题最重要的若是题目难就会出在2、4象限,这时要考虑长度没有负数,在算地时候要加绝对值.

总之函数问题都是要从函数解析式上入手,必须保证解析式正确,然后根据条件带进去算3、4问,并且一定要学会合理假设.

Ps:文综我们已经开卷了就没什么可说的,个人推荐数学就把老师发的、布置的卷子做精,不需要找什么新的难题,只要多见题型就可以了.

关于最值问题的方法

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们抽出时间写写总结吧。那么你知道总结如何写吗?下面是我帮大家整理的高中导数题型总结,仅供参考,希望能够帮助到大家。

 首先,关于二次函数的不等式恒成立的主要解法。

 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

 1、此类问题提倡按以下三个步骤进行解决:

 第一步:令得到两个根;

 第二步:画两图或列表;

 第三步:由图表可知;

 其中不等式恒成立问题的实质是函数的最值问题,

 2、常见处理方法有三种:

 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,

 (1)若在区间上为“凸函数”,求m的取值范围;

 (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.

 解:由函数得

 (1)在区间上为“凸函数”,

 则在区间[0,3]上恒成立

 解法一:从二次函数的区间最值入手:等价于

 解法二:分离变量法:

 ∵当时,恒成立,

 当时,恒成立

 等价于的最大值()恒成立,

 而()是增函数,则

 (2)∵当时在区间上都为“凸函数”

 则等价于当时恒成立

 变更主元法

 再等价于在恒成立(视为关于m的一次函数最值问题)

 请同学们参看2010第三次周考:

 例2:设函数

 (Ⅰ)求函数f(x)的单调区间和极值;

 (Ⅱ)若对任意的不等式恒成立,求a的取值范围.

 (二次函数区间最值的例子)

 解:(Ⅰ)

 令得的单调递增区间为(a,3a)

 令得的单调递减区间为(-,a)和(3a,+)

 ∴当x=a时,极小值=当x=3a时,极大值=b.

 (Ⅱ)由||≤a,得:对任意的恒成立①

 则等价于这个二次函数的对称轴(放缩法)

 即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。

 上是增函数.(9分)

 ∴

 于是,对任意,不等式①恒成立,等价于

 又∴

 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

 第三种:构造函数求最值

 题型特征:恒成立恒成立;从而转化为第一、二种题型

 例3;已知函数图象上一点处的切线斜率为,

 (Ⅰ)求的值;

 (Ⅱ)当时,求的值域;

 (Ⅲ)当时,不等式恒成立,求实数t的取值范围。

 解:(Ⅰ)∴,解得

 (Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减

 又

 ∴的值域是

 (Ⅲ)令

 思路1:要使恒成立,只需,即分离变量

 思路2:二次函数区间最值

 二、题型一:已知函数在某个区间上的单调性求参数的范围

 解法1:转化为在给定区间上恒成立,回归基础题型

 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集

 例4:已知,函数.

 (Ⅰ)如果函数是偶函数,求的极大值和极小值;

 (Ⅱ)如果函数是上的单调函数,求的取值范围.

 解:.

 (Ⅰ)∵是偶函数,∴.此时,,

 令,解得:.

 列表如下:

 (-∞,-2)

 -2

 (-2,2)

 2

 (2,+∞)

 +

 0

 -

 0

 +

 递增

 极大值

 递减

 极小值

 递增

 可知:的极大值为,的极小值为.

 (Ⅱ)∵函数是上的单调函数,

 ∴,在给定区间R上恒成立判别式法

 则解得:.

 综上,的取值范围是.

 例5、已知函数

 (I)求的单调区间;

 (II)若在[0,1]上单调递增,求a的取值范围。子集思想

 (I)

 1、

 当且仅当时取“=”号,单调递增。

 2、

 单调增区间:

 单调增区间:

 (II)当则是上述增区间的`子集:

 1、时,单调递增符合题意

 2、,

 综上,a的取值范围是[0,1]。

 三、题型二:根的个数问题

 题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题

 解题步骤

 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;

 第三步:解不等式(组)即可;

 例6、已知函数,,且在区间上为增函数.

 求实数的取值范围;

 若函数与的图象有三个不同的交点,求实数的取值范围.

 解:(1)由题意∵在区间上为增函数,

 ∴在区间上恒成立(分离变量法)

 即恒成立,又,∴,故∴的取值范围为

 (2)设,

 令得或由(1)知,

 ①当时,,在R上递增,显然不合题意…

 ②当时,,随的变化情况如下表:

 —

 ↗

 极大值

 ↘

 极小值

 ↗

 由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得

 综上,所求的取值范围为

 根的个数知道,部分根可求或已知。

 例7、已知函数

 (1)若是的极值点且的图像过原点,求的极值;

 (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。

 解:(1)∵的图像过原点,则,

 又∵是的极值点,则

 (2)设函数的图像与函数的图像恒存在含的三个不同交点,

 等价于有含的三个根,即:

 整理得:

 即:恒有含的三个不等实根

 (计算难点来了:)有含的根,

 则必可分解为,故用添项配凑法因式分解,

 十字相乘法分解:

 恒有含的三个不等实根

 等价于有两个不等于-1的不等实根。

 题2:切线的条数问题====以切点为未知数的方程的根的个数

 例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.

 (1)由题意得:

 ∴在上;在上;在上

 因此在处取得极小值

 ∴①,②,③

 由①②③联立得:,∴

 (2)设切点Q,

 过

 令,

 求得:,方程有三个根。

 需:

 故:;因此所求实数的范围为:

 题3:已知在给定区间上的极值点个数则有导函数=0的根的个数

 解法:根分布或判别式法

 例8、

 解:函数的定义域为(Ⅰ)当m=4时,f(x)=x3-x2+10x,

 =x2-7x+10,令,解得或.

 令,解得

 可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.

 (Ⅱ)=x2-(m+3)x+m+6,

 要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)

 根分布问题:

 则,解得m>3

 例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.

 解:(1)

 当时,令解得,令解得,

 所以的递增区间为,递减区间为.

 当时,同理可得的递增区间为,递减区间为.

 (2)有且仅有3个极值点

 =0有3个根,则或,

 方程有两个非零实根,所以

 或

 而当或时可证函数有且仅有3个极值点

 其它例题:

 1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.

 (Ⅰ)求函数的解析式;

 (Ⅱ)若时,恒成立,求实数的取值范围.

 解:(Ⅰ)

 令=0,得

 因为,所以可得下表:

 0

 +

 0

 -

 ↗

 极大

 ↘

 因此必为最大值,∴因此,,

 即,∴,∴

 (Ⅱ)∵,∴等价于,

 令,则问题就是在上恒成立时,求实数的取值范围,

 为此只需,即,

 解得,所以所求实数的取值范围是[0,1].

 2、(根分布与线性规划例子)

 (1)已知函数

 (Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;

 (Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.

 解:(Ⅰ).由,函数在时有极值,

 ∴

 ∵∴

 又∵在处的切线与直线平行,

 ∴故

 ∴…………………….7分

 (Ⅱ)解法一:由及在取得极大值且在取得极小值,

 ∴即令,则

 ∴∴故点所在平面区域S为如图△ABC,

 易得,,,,,

 同时DE为△ABC的中位线,

 ∴所求一条直线L的方程为:

 另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,

 由得点F的横坐标为:

 由得点G的横坐标为:

 ∴即

 解得:或(舍去)故这时直线方程为:

 综上,所求直线方程为:或.…………….………….12分

 (Ⅱ)解法二:由及在取得极大值且在取得极小值,

 ∴即令,则

 ∴∴故点所在平面区域S为如图△ABC,

 易得,,,,,

 同时DE为△ABC的中位线,∴所求一条直线L的方程为:

 另一种情况由于直线BO方程为:,设直线BO与AC交于H,

 由得直线L与AC交点为:

 ∵,,

 ∴所求直线方程为:或

 3、(根的个数问题)已知函数的图象如图所示。

 (Ⅰ)求的值;

 (Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;

 (Ⅲ)若方程有三个不同的根,求实数a的取值范围。

 解:由题知:

 (Ⅰ)由图可知函数f(x)的图像过点(0,3),且=0

 得

 (Ⅱ)依题意=–3且f(2)=5

 解得a=1,b=–6

 所以f(x)=x3–6x2+9x+3

 (Ⅲ)依题意f(x)=ax3+bx2–(3a+2b)x+3(a>0)

 =3ax2+2bx–3a–2b由=0b=–9a①

 若方程f(x)=8a有三个不同的根,当且仅当满足f(5)<8a

 由①②得–25a+3<8a<7a+3

 所以当

 4、(根的个数问题)已知函数

 (1)若函数在处取得极值,且,求的值及的单调区间;

 (2)若,讨论曲线与的交点个数.

 解:(1)

 ………………………………………………………………………2分

 令得

 令得

 ∴的单调递增区间为,,单调递减区间为…………5分

 (2)由题得

 即

 令……………………6分

 令得或……………………………………………7分

 当即时

 -

 此时,,,有一个交点;…………………………9分

 当即时,

 ∴当即时,有一个交点;

 当即时,有两个交点;

 当时,,有一个交点.………………………13分

 综上可知,当或时,有一个交点;

 当时,有两个交点.…………………………………14分

 5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.

 (Ⅰ)若函数在处有极值,求的解析式;

 (Ⅱ)若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.

你好,在初中数学里,求最值的主要题型便是距离最短的相关问题以及化为求二次函数的最值的问题,例如在求解距离最短问题中往往是利用轴对称原理,或者利用题目的条件列出二次函数从而进行求解,这两大类主要题型你已经较好掌握了,基本上也差不多了。

至于你所说的,如:有一条线,把它围成一个三角形,面积最大是多少?这种问题,实际上是也确实是有点超纲的。这种题目本质上是等周问题(即更一般地说,在周长相等的各种平面图形中,哪一种图形的面积最大?事实上答案就是圆,当然具体证明得用到高等数学知识,这里也不赘述了),考虑到初中的数学知识,出题者将难度降低了,只考虑三角形。具体解题中需要运用海伦——秦九韶公式,即三角形面积S=√[ p(p - a)(p - b)(p - c)],其中p=(a + b + c)/2,a、b、c分别为三角形三边边长,这样在本题中p为定值了,而再利用三元的平均值不等式即可得出,实际上要使周长固定的三角形面积最大,那就是正三角形。从我个人角度来看,这道题更像是初中竞赛难度的题目或者是高中难度的题目。

总的来说,当碰到无法化归于距离最值问题或二次函数最值问题时,要注意是否遗漏了关键条件,再者便可能是需要一些补充知识,而一些补充知识的话你可以根据自己水平来选择学习,当然向有经验的老师询问更好。

关于“高分!请教中考数学!怎么做二次函数压轴大题?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[饮秋露]投稿,不代表濮阳号立场,如若转载,请注明出处:https://www.pyyp.cn/py/399.html

(21)

文章推荐

  • 怎么举报饭店不卫生

    网上有关“怎么举报饭店不卫生”话题很是火热,小编也是针对怎么举报饭店不卫生寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:如果知道一家饭店里面很不卫生想投诉应该怎么投诉可以到当地卫生部门或食品药品监督管理局进行举报或通过这两个部门向社会公开的监督电

    2025年09月08日
    23306
  • 广州中职前十名学校

    网上有关“广州中职前十名学校”话题很是火热,小编也是针对广州中职前十名学校寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。广州中职前十名学校如下:1、广州市交通运输职业学校该校是广东省重点职业学校,致力于培养交通运输领域的专业技能人才。该校的汽车运用与维修、交

    2025年09月08日
    21309
  • 管理心理学-如何设计薪酬与奖励才能起到积极员工的作用

    网上有关“管理心理学:如何设计薪酬与奖励才能起到积极员工的作用”话题很是火热,小编也是针对管理心理学:如何设计薪酬与奖励才能起到积极员工的作用寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。很多企业都有这样的困惑,辛辛苦苦制定出来奖金发放办法,最终却没有收到预

    2025年09月08日
    20316
  • 荣耀80和荣耀60pro哪个好?

    网上有关“荣耀80和荣耀60pro哪个好?”话题很是火热,小编也是针对荣耀80和荣耀60pro哪个好?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。荣耀80手机很不错,轻薄灵动,上手心动,手机采用双曲面设计,超薄超轻,一上手,就倾心。采用交融双镜设计,两个圆

    2025年09月09日
    21308
  • 目前西瓜嫁接栽培常用的砧木有哪些?

    网上有关“目前西瓜嫁接栽培常用的砧木有哪些?”话题很是火热,小编也是针对目前西瓜嫁接栽培常用的砧木有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。目前,西瓜嫁接所用的砧木主要有葫芦、南瓜和冬瓜三种,近几年野生西瓜砧的应用也逐年增加。各砧木的主要特点如下

    2025年09月09日
    19315
  • 个人低保和家庭低保有什么区别

    网上有关“个人低保和家庭低保有什么区别”话题很是火热,小编也是针对个人低保和家庭低保有什么区别寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。个人低保和家庭低保的区别如下:1.个人低保是单人符合条件享受的待遇,家庭低保则是家庭中多人符合条件共享待遇。2.重

    2025年09月10日
    15306
  • 广东省普宁市到福建省莆田市湄州岛的里程是多远

    网上有关“广东省普宁市到福建省莆田市湄州岛的里程是多远”话题很是火热,小编也是针对广东省普宁市到福建省莆田市湄州岛的里程是多远寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。驾车路线:全程约514.0公里起点:广东省普宁市国土资...1.揭阳市内驾车方案1)

    2025年09月11日
    15320
  • 不列颠东印度公司的历史

    网上有关“不列颠东印度公司的历史”话题很是火热,小编也是针对不列颠东印度公司的历史寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。英国商人经常在印度洋与荷兰和葡萄牙竞争者发生武装冲突。1612年东印度公司战胜葡萄牙人,使他们获得莫卧尔帝国皇帝贾汗吉尔的青睐。

    2025年09月12日
    11320
  • 明天又是新的一天英语怎么说

    网上有关“明天又是新的一天英语怎么说”话题很是火热,小编也是针对明天又是新的一天英语怎么说寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。Afterall,tomorrowisanotherday!:1.Afterall,tomorrowis

    2025年09月13日
    8301
  • 张杰 我们都一样 歌词

    网上有关“张杰我们都一样歌词”话题很是火热,小编也是针对张杰我们都一样歌词寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。我们都一样填词:苟庆,曹轩宾谱曲:曹轩宾编曲:沙维琪演唱:张杰推开窗看见星星依然守在夜空中心中不免多了些暖暖的感动一闪一闪的

    2025年09月13日
    5315
  • 人事档案是什么意思啊?

    网上有关“人事档案是什么意思啊?”话题很是火热,小编也是针对人事档案是什么意思啊?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。个人档案即人事档案,档案中包含的材料如下:1、履历材料。2、自传材料;报告个人有关事项的材料。3、考察、考核、鉴定材料;审计材料。

    2025年09月14日
    4301
  • 河南鲁山县和淮滨相信距多少公里

    网上有关“河南鲁山县和淮滨相信距多少公里”话题很是火热,小编也是针对河南鲁山县和淮滨相信距多少公里寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。驾车路线:全程约378.6公里起点:鲁山县1.平顶山市内驾车方案1)从起点向正东方向出发,沿老城大街行驶400米

    2025年09月14日
    4309

发表回复

本站作者才能评论

评论列表(3条)

  • 饮秋露的头像
    饮秋露 2025年09月08日

    我是濮阳号的签约作者“饮秋露”

  • 饮秋露
    饮秋露 2025年09月08日

    本文概览:网上有关“高分!请教中考数学!怎么做二次函数压轴大题?”话题很是火热,小编也是针对高分!请教中考数学!怎么做二次函数压轴大题?寻找了一些与之相关的一些信息进行分析,如果能碰巧解...

  • 饮秋露
    用户090812 2025年09月08日

    文章不错《高分!请教中考数学!怎么做二次函数压轴大题?》内容很有帮助