网上有关“直角三角形斜边中线定理怎么证明?”话题很是火热,小编也是针对直角三角形斜边中线定理怎么证明?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
直角三角形斜边中线定理:
直角三角形斜边中线定理是数学中关于直角三角形的一个定理,具体内容为:
如果一个三角形是直角三角形,那么这个三角形斜边上的中线等于斜边的一半。
逆定理1
如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形,且该边是斜边。
几何语言:在△ABC中,AD是中线,且BC=2AD,则∠BAC=90°。
证法1
延长AD到E,使DE=AD,连接BE,CE
∵BD=CD,AE=2AD=BC
∴四边形ABEC是矩形(∵对角线互相平分且相等)
∴∠BAC=90°
证法2
过D作DE⊥AB,垂足为E。
∵AD=BC/2=BD
∴E是AB中点(三线合一)
∴DE∥AC(三角形中位线定理)
∴AC⊥AB,即∠BAC=90°
三角形中线定理:是三角形中线的一个基本性质,性质:三角形三条中线都在三角形内。三角形三条中线交于一点,该点叫做三角形的重心。直角三角形斜边上的中线等于斜边的一半。三角形中线组成的三角形面积等于三角形面积的3/4。
三角形的中线是连接三角形顶点和它的对边中点的线段。每个三角形都有三条中线,它们都在三角形的内部。在三角形中,三条中线的交点是三角形的重心。三角形的三条中线交于一点,这点位于各中线的三分之二处。
三角形的中线与三角形的中位线,这两者也只有一字之差,它们的不同点是:“三角形的中线”指的是连接三角形的一个顶点和它对边中点的线段;“三角形的中位线”指的是连接三角形两边中点的线段。
而这两个概念又存在着共同点:都是线段;每一个三角形都有三条中线,也都有三条中位线。三角形共轭中线:三角形的一个顶点与对边中点的连线称为三角形的中线。这条中线关于这个顶角的平分线对称的直线称为三角形的共轭中线(或陪位中线)。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
判定
1、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
2、如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
3、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
关于“直角三角形斜边中线定理怎么证明?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[忆彤]投稿,不代表濮阳号立场,如若转载,请注明出处:https://www.pyyp.cn/py/1074.html
评论列表(3条)
我是濮阳号的签约作者“忆彤”
本文概览:网上有关“直角三角形斜边中线定理怎么证明?”话题很是火热,小编也是针对直角三角形斜边中线定理怎么证明?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望...
文章不错《直角三角形斜边中线定理怎么证明?》内容很有帮助